Precalculus

9-01 Matrices and Systems of Equations

Matrix

- Rectangular \qquad of numbers

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \cdots & a_{m n}
\end{array}\right]
$$

- $a_{\text {rowicolumn }}$
- Each entry is an \qquad
- Augmented Matrix
- Two matrices \qquad together
- Order of matrix

Elementary Row Operations

- $\quad 2$ rows
- ___ a row by a nonzero constant
-

Add 2 times 1st row to the 2nd row: $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$

Row-Echelon Form

- All rows consisting entirely of \qquad are at \qquad
- For other rows, the first \qquad entry is \qquad
- For successive rows, the leading 1 in the \qquad _row is farther to the \qquad
- $\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0\end{array}\right] \quad\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1\end{array}\right]$

Reduced Row-Echelon Form

- Columns with leading 1 have \qquad as other entries $\left[\begin{array}{llll}1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Solve $\left\{\begin{array}{c}x+3 y+4 z=7 \\ 2 x+7 y+5 z=10 \\ 3 x+10 y+4 z=27\end{array}\right.$

$$
(3 x+10 y+4 z=27
$$

